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Summary: Dicarbonyl sugars are convenient substrates for the stereoselective synthesis of hydroxylated 
piperidines and pyrrolidines, via a double reductive amination reaction (NaCNBH3, MeOH). Using this strategy, 
2;5-anhydro-imino-D-glucitol (1) and 1-deoxynojirimycin (3) were prepated from 5-keto-D-fructose (2, 
commercially available) and 5-ketoD-ghtcose (4), respectively. 

Many polyhydroxylated piperidines and pyrrolidines sre powerful inhibitors of glycohydrolases, enzymes 

responsible for glycoprotein processing and the gastrointestinal breakdown of dietary carbohydrates.l These 

azasugars have potential therapeutic utility in the treatment of various diseases, such as diabetes, cancer, and viral 

infections.24 Particular attention has focus& on anti-l-BY activity in the AIDS area, because the proper 

functioning of cell-surface glycoproteins on the virus particle is essential for infectivity? Therefore, it is not 

surprising that the synthesis of polyhydroxylated pipe&lines and pyrrolidines. such as ldeoxynojirimycin (3),5 

has been the subject of considerable recent rematch. 

Synthetic routes to azasugars have commonly entailed azide displacement/reduction and N-alkylative 

cyclization with protecting-group manipulations. 5 ln addition, semisynthetic methods employing an enzymatic 

transformation have proved useful.5df~~ We describe here a new approach to the synthesis of polyhydmxylated 

piperidines and pyrrolidines that hinges on double reductive amination of appropriate dicarbonyl sugars. By this 

method, we achieved an efficient, stereoselective synthesis of 1 from 5-keto-D-fructose (2) and 3 from 5-keto-P 

glucose (4). 
I.4 WP” CHO 

Although a variety of dicarbonyl sugars have been described, they still ate a somewhat underexplored class of 

monosaccharides.6 5-Keto-Dfructose (2) is a commercially available representative, easily prepared by microbial 

oxidation of D-fructose.’ Because of its accessibility, we initially investigated the use of 2 as a substrate in a 

double reductive amination protocol. A&r extensive experimentation (l-I2 with Pd. Pt. or Ra-Ni; botohydrides) 

we found that 2 readily gives pynolidines with a variety of amines by using NaCNBH3 in refluxing methanol.tu 

For example, reaction with benzhydrylamine (0.85 molcquiv) gave a mixture of pyrrolidhre steteoisomers (68%). 
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highly enriched in 2,5-anhydroimino-D-glucitol (S). There are three stereoisomers that can form in the reaction: 

D-ghmitol 5. L-idito16, and D-mannitol 7. If reductive amination on both ketones were to proceed stereo- 

randomly, then a 2:l:l ratio of 5:6:7 would be observed Instead, we found an 86:8:6 mixture of 5:6:7, from 

which pure 5 (and 7) were readily isolated. 11 The significant stereocontrol and the unexpected preference for 

glucitol isomer 5 can be attributed to a moderate thre&rythro stereoselectivity in the first reductive amination, on 

an acyclic ketone, followed by high cis stereoselectivity in reduction of the cyclic imine, via assistance by the 

neighboring ring hydroxyl group.13 Removal of the benzhydryl group from 5 gave 1 [20% Pd(OH)#, HZ; 

91%]. a new in&o sugar which comprises part of the carbon skeleton of the alexine pyrmlizidine alkaloids.14 
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With success in forming the pyrrolidine ring, we sought to extend our method to the synthesis of 

piperidines, such as 1-deoxynojirimycin (3). from 5-keto-D-glucose (4).15 We reasoned that this reaction might 

even be more stereoselective since the fmt reductive amination would presumably involve the mom reactive 

aldehyde carbonyl, and the second, stemodetermining reduction of the cyclic imine would be subject to strong 

stereocontrol (via internal delivery of hydride). Koebemick at Bayer has demonstrated the special stereocontrol 

available upon reduction of imines with borohydride sources, compared with noble metal hydrogenations.5f In his 

work, an amino sorbose derivative (i.e. the product of the fust reductive amination of 4) reduced with 

MemaBH3 to give the deoxynojirimycin (glucitol) stereoisomer, with only traces of the other (iditol) reduction 

product.sf Ketoaldose 4 had been described in the literature, but had not been completely characterized or 

employed as a precursor to azasugars. We improved on the qorted synthesis of 4 by combining the highly 

selective oxidation16 of readily available 8 to 9 with the deketalization used in the synthesis of 4 by Kiely and 

Fletcher.lsbJ8 Reductive amination of 4 with benzhydrylamine (NaCNBH3, MeOR, 0.8 mol-equiv of amine; 

OT) gave a mixtme of l-deoxynojirimycin derivative 10 and the L-iditol diastemomer in a ratio of 964 (74% after 

chromatography).19 Deprotection by hydrogenolysis [20% Pd(OH)z, Hz; 90%] followed by ion-exchange on 

Dowex 5OW-X8 resin and recrystallization gave l-deoxynojirimycin (3), identical to the natural ptoduct.~ From 

4. the two-step yield for preparation of 3 is 67%. 
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We attribute the high stereoselectivity in the formation of 10 to hydroxyldirected hydride delivery, as in the 

reaction of 2. In order to probe this point, we prepared diols 11 and l2,21 which am hydrates of acylated 4, in 

equilibrium with the unhydrated open-chain forms in CDC13 (20-30% acyclic form, 400 MHz tH NMR). 
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Reductive aminations with benzylamine, under the same conditions as those employed for 4. proved much mom 

problematic, as sugars 11 and 12 underwent considerable decomposition even at OY!. Only under carefully 

controlled conditions (-78’C. 1 h, gradual warming) were tractable products obtained. Two stereoisomers were 

isolated in mixtures of 1:l for 13 and 14. and 1:2 for 15 and 16. Not only were these reactions stereorandom, 

but the combined yields of the products were low (27% for 13/l4 and 3096 for 15/16). A similar result was 

obtained upon reaction of 11 with benzhydrylamine. These experiments clearly establish the special role of the 

free hyrhuxyls in 4 (and also in 2) in facilitating a stereoselective and efBcient reductive amination reaction. 

11 R-k 12 R-AC 14 R-k 
12 R-k 15 R-B2 16 R-Bz 

Tsuda aud colleagues prepared nojirimycin from 9, but they formed the C-N bond at C5 first (before the C-N 

bond at Cl) by reduction of an oxime &rived from 9 with aluminum hydride reagents,% a modification of the 

original work of Inouye and co-workers. a Reduction of the oxime was not very stereoselective and was 

dependent on the oxime geometry; them were mixtmes of products that were eventually resolved through a 

chemical process.~ These results ut&mcom the advantage of using 4 en route to 3, presumably because the Cl- 

N bond forms first in reaction of 4, with the key stemodetennining step being reduction of the subsequent, cyclic 

imine intermediate. 

Our protocol allows for the direct preparation of glycohydrolase inhibitors with a minimum of protecting- 

group manipulations. Varying the amine component in the reaction provides 1y-substituted aminosugars directl~.~ 
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